	()						
I.				1983			
1.						가	
3	3		가				
						, , , ,	
			1980				
		가		- ,	,	, , ,	
		·		,	,	,	

ł

Ш. (1) $F_{\mathbb{D}} \in F_f - F_g$ 1. $F_i (= \mu F_N)$ F_{D} $F_{3} \langle = F_{w} \sin \theta \rangle$. . Iribarren, $F_1 = \mu \cos \theta (s-1) \rho_B \xi_V \phi^2$ (2) Hudson, Van der Meer $F_{S} = \sin \theta (s - 1) \rho g \zeta_{V} \phi^{\prime}$ (3) , 가 $F_D = \rho C_D \zeta_A u_D^2 \theta^2$ (4) . , Van der Meer $F_w \sin \theta$. 가. Fx $= \rho_s g \nabla$ 1) Iribarren Iribarren(1948) 가 [4] 가 , 가 μ , $v = \rho_{\pm}/\rho_{\tau}$, ρ_{\pm} Iribarren , g , , 가 , 🗤 , ĉ, , $, \psi$, **C**_D uş, (1) [4] . Iribarren 🗤 가 √gH 가 Н 가 (2), (3), (4) (1) Iribarren .

$$q = \frac{W}{\rho_{3}gH^{2}} = \frac{K_{1}}{(s-1)^{2}(\cos\delta - \mu^{-1}\sin\delta)^{7}}$$
(5)
$$K_{1} = \frac{C^{2}}{\mu^{2}\zeta_{V}},$$
$$\phi_{n} \qquad W = \rho_{1}g\phi_{n}^{2} = \rho_{1}g\zeta_{V}\phi^{2}$$

2) Hudson Hudson(1953) •• , (h) (H) , •• Iribarren Iribarren K₁, ≠ . Hudson , , , , K₅

.

Hudson

.

$$\delta = \frac{H}{(s-1)\phi_0} = K_b^{10} R^{10}$$
(6)

.

Hudson [5] cot Iribarren (5) ($\cos \theta - \mu^{-1} \sin \theta$) $\cot \theta^{\mu 0}$ (6) . (5) (6) 7 . $\theta = \frac{1}{(n-1)} \pi^{\mu 0}$ (7)

3) Van der Meer Van der Meer(1988)

, ,

$$\delta = \begin{cases} 6.2P^{0.3} (D/\sqrt{N})^{0.5} / \sqrt{I_i} & (0.4 \le I_i \le 2.5) \text{ (8a)} \\ 1.0P^{-6.3} (D/\sqrt{N})^{0.5} I_i \sqrt{R} & (2.5 \le I_i) & (8b) \end{cases}$$

,

P, D, N, N, Iribarren

$$I_{c} = \frac{S}{\sqrt{M_{B}}}$$
(9)

(9)
$$M_{s} (= H_{s} / L_{s} = 2tH_{s} / gT_{s}^{2})$$

, $S = tan \theta$. [6] I_{i}
 $I_{i} = 7 + 2.5$

 $\kappa_r = 2.72 (D/\sqrt{N})^{\alpha_2} \xi_{\chi}$ (14) $K_{J} = 6.00 (D/\sqrt{N})^{0.2} t_{T}^{1.7}$ (15) (12) (13) (11) Saville , 가 $y = (0.48 - 0.28P)(s-1)^{-1}(\sqrt{N}/D)^{0.2}S^{1/5}$ (16)• (14) (15) 가. 1) $\gamma = (0.18 - 0.04P)(s-1)^{-1}(\sqrt{N}/D)^{0.2}\xi_T^{\alpha}S^{17}$ (17) Takada $\frac{h_R}{H} = \left[\sqrt{\frac{\pi}{2\delta}} + \left(\frac{\eta_1}{H} - 1 \right) \right] \xi_R$ (19) , x = 0.23P-0.37 , (P) 가 0.1 0.4 , -0.35 -0.28 $\xi_{\rm R} = \begin{cases} 1 & ({\rm R} \le {\rm R}_{\star}) \\ \left(\frac{{\rm R}_{\star}}{{\rm R}}\right)^{2\nu} & ({\rm R} > {\rm R}_{\star}) \end{cases}$ $(R \leq R_*)$. -1/3 , x = -1/3 가 $\gamma = (0.29 - 0.06P)(s-1)^{-1}(\sqrt{N}/D)^{0.7}S_{\gamma}^{10}$ (18) Н $R = \cot \theta$, $R_c = \cot \theta_c$, θ_c 흡 $S_T = F_H^2 S F_H = C/\sqrt{gH}$ C d/kSainflou Miche 가 . 2. Sainflou $\frac{\vartheta_i}{H} = 1 + \frac{KH}{2} \operatorname{coth} \nu^{\mu}$ (20)가 (run up) Miche (h_R) . (H) 1.0H $\frac{s_s}{H} = 1 + \frac{KH}{2} \operatorname{coth} Kh \left(1 + \frac{3}{4 \sinh^3 Kh} - \frac{1}{4 \cosh^3 Kh} \right)$ (21) 1.3H 2.5H 1.0H 가

(R>//a/1.2,1<h/H<3)

$\frac{H}{T^2}$	$\frac{-H}{\varepsilonT^{\gamma}}(\approxM)$	a	ß	$\sigma\left(\beta \leftarrow -j\right)$
0.0029	0.0003	45.05	-1.29	21
0.0058	0.0006	27.55	-1.23	16
0.0088	0.0009	20.61	-1.19	13.5
0.0117	0.0012	17.06	-1.16	11.5
0.0157	0.0016	14.49	-1.14	10.5
0.0186	0.0019	12.86	-1.12	9.9
0.0226	0.0023	11.12	-1.11	8.8
0.0304	0.0031	8.18	-1.05	7.3
0.0461	0.0047	6.31	-1.03	6.1
0.0608	0.0062	5.28	-1.01	5.2
0.0765	0.0078	4.19	-0.96	4.56
0.0912	0.0093	3.67	-095	4.1
0.1216	0.0124	2.98	-0.91	3.3

$\frac{H}{T^2}$	$\frac{H}{\epsilonT^2}(\approx N)$	a'	β	$\sigma\left(\beta \rightarrow 0\right)$
0.0029	0.0003	4.65	-0.04	4.8
0.0058	0.0006	4	0.01	4.2
0.0088	0.0009	3,55	0.09	3.8
0.0117	0.0012	3.24	0.15	3.7
0.0157	0.0016	3	0.16	3.4
0.0186	0.0019	2.84	0.19	3.3
0.0226	0.0023	2.63	0.21	3.1
0.0304	0.0031	2.4	0.21	2.9
0.0461	0.0047	2.13	0.37	2.7
0.0608	0.0062	1.9	0.32	2.45
0.0768	0.0078	1.78	0.4	2.25
0.0912	0.0093	1.66	0.33	2.15
0.1216	0.00124	1.52	0.34	1.9

R .

 $b_R/H \leq \partial R^2$

b_k/H<과?'가. [6] -1가. (30)

- e	$R_1h_1 + B_5 + R_2(h_2 + aHR^{-1})$	$(R_3b_1 + B_5 + R_5b_2)R + \sigma HR_2$	(31)
n. –	$aHR^{-1} + b_1 + b_2$	$\sigma H + (h_1 + h_2)R$	(31)

(31) R

•

 $(b_1+b_2)R^2 + (\sigma H - R_3b_1 - B_4 - R_2b_3)R - \sigma HR_2 = 6$ (32)

(32)

$$R = \frac{H\left[(q-a)\pm\sqrt{(a-q)^2+4aR_2\frac{(h_1+h_2)}{H}}\right]}{2(h_1+h_2)}$$
(33)

 $\eta = (R_3h_1 + B_8 + R_3h_3)/H$

b_R/H < JR⁷ b_R/H = -7 . [7]

•

$$R = \frac{R_1 h_1 + B_2 + R_2 (h_2 + aH)}{aH + h_1 + h_2}$$
(34)
(29) 1 h/H 3

М

Table 3

-

.

$$a = 0.42 \,\mathrm{M}^{-0.5}$$
 (35)

(35) $R > \sqrt{a/1^{-1}}$ $R > 0.59 M^{-2}$ (29)

.

[8]

$$\frac{h_R}{H} = 0.42 M^{-0.5} R^{-1} \quad (R > 0.59 M^{-0.55})$$
(36)
$$R < \sqrt{\frac{-\alpha}{1.2}} [7] \qquad 7 I$$
(S) M

.

 $\frac{h_{\pi}}{H} = \frac{\sigma}{R} = 0.38 M^{-0.3} R^{-1} \qquad (R > 0.37 M^{-0.34})$ (38)

,

h_c/H_l	a	β	영위
	0.14×10^{-2}	2.22	$b \le 1.7H$
0.5	0.0049	-0.34	$b \ge 1.7H$
0.75	0.3×10 ⁻²	2.2	b ≤ 1.8H
0.75	0.0021	-0.51	$h \ge 1.8H$
1.0	0.3×10 ⁻⁴	5.36	h ≤ 1.9H
1.0	0.001	-0.78	b ≥ 1.9H
1.74	0.6×10 ⁻⁵	5.27	$h \le 3H_0$
125	0.0003	-0.8	$h \geq 3H_0$
	0.4×10 ⁻⁶	6.01	$b \le 2.3H$
1.5	0.00007	-0.98	b ≥ 2.3H
1.75	0.2×10 ⁻⁷	6.85	b ≤ 2.5H
1.15	0.0002	-1.21	$b \ge 2.5H$

||

